

激光粉尘传感器

(型号: ZH10-F)

使用说明书

版本号: 1.0

实施日期: 2023-03-12

郑州炜盛电子科技有限公司 Zhengzhou Winsen Electronic Technology Co., Ltd 声明

本说明书版权属郑州炜盛电子科技有限公司(以下称本公司)所有,未经书面许可,本

说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可以电子、翻拍、录音

等任何手段进行传播。

感谢您使用炜盛科技的系列产品。为使您更好地使用本公司产品,减少因使用不当造成

的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。如果您不

依照本说明书使用或擅自去除、拆解、更换传感器内部组件,本公司不承担由此造成的任何

损失。

您所购买产品的颜色、款式及尺寸以实物为准。

本公司秉承科技进步的理念,不断致力于产品改进和技术创新。因此,本公司保留任何

产品改进而不预先通知的权力。使用本说明书时,请确认其属于有效版本。同时,本公司鼓

励使用者根据其使用情况,探讨本产品更优化的使用方法。

请妥善保管本说明书,以便在您日后需要时能及时查阅并获得帮助。

郑州炜盛电子科技有限公司

激光粉尘传感器ZH10-F

产品描述

ZH10-F 是一个通用型、小型化激光粉尘传感器,利用米氏散射原理,能够对空气中存在的粉尘颗粒物进行检测。通过专业算法和标定检测工艺处理,该传感器具有良好的一致性和稳定性。传感器同时具备串口输出和 PWM 输出能力,方便使用,体积小,便于集成应用。

传感器特点

一致性好

实时响应

数据准确

体积小

抗干扰能力强

最小分辨颗粒直径 0.3 µm

主要应用

空气净化器、

新风系统、

便携式仪表、

空气质量监测仪、

空调、

消费类电子产品等设备的配套。

表 1-技术指标

粒径检测范围	0. 3-10 μ m	
有效量程	$0-1000~\mu~g/m^3$	
数据刷新频率	1s	
检测精度	PM1. $0/\text{PM2.}$ 5 $0-100$ $\mu\text{g/m}^3$: ± 10 $\mu\text{g/m}^3$: $101-1000$ $\mu\text{g/m}^3$: $\pm 10\%$ 读数 PM10 $0-100$ $\mu\text{g/m}^3$: ± 25 $\mu\text{g/m}^3$; $101-1000$ $\mu\text{g/m}^3$: $\pm 25\%$ 读数 (测试条件: 25 ± 2 °C, $50\pm 10\%$ RH, TS18530,香烟,GBT18801-2015)	
上电稳定时间	<10s	
输出数据	UART_TTL输出(3.3V电平)	
相口奴加	PWM输出 (3.3V电平)	
工作电压	5V±0.5V (DC); 纹波≤50mV	
工作电流	<130mA	
省电模式电流	<20mA	
工作湿度	0~95%RH(无凝结)	
工作温度	-10~60℃	
存储温度	-30~70℃	
外形尺寸	$38 \times 35 \times 12$ mm (L \times W \times H)	
重量	<30g	
产品寿命	≥5年	

引脚顺序:

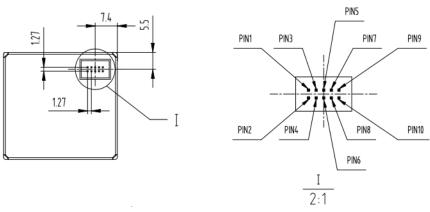


图 1-引脚顺序

引脚定义:

表 2-引脚定义

序号	名称	描述
PIN1	TXD 串口发送	<u>TTL@3. 3V</u>
PIN2	SET	设置端(TTL @3.3V,高电平或悬空为正常工作状态、低电平为休眠状态)
PIN3	RXD 串口接收	<u>TTL@3. 3V</u>
PIN4	保留	NC
PIN5	保留	NC
PIN6	PWM 输出	<u>TTL@3. 3V</u>
PIN7、PIN8	GND	电源输出地
PIN9、PIN10	VDD	电源输入端+5V

端口说明:

传感器使用端子以及配套端子描述:

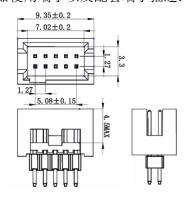


图 2-端子型号 (PH=2x5x1.27mm)

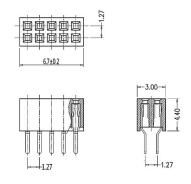


图 2-1 配套端子(仅作参考)

说明:图 2-1 中配套端子仅做参考使用。在使用贴片式配套端子连接传感器时,应确保传感器壳体与端子引脚之间的安全距离,防止发生短路等故障。

激光粉尘检测原理说明:

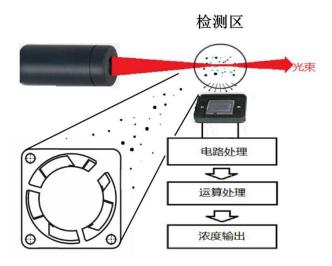
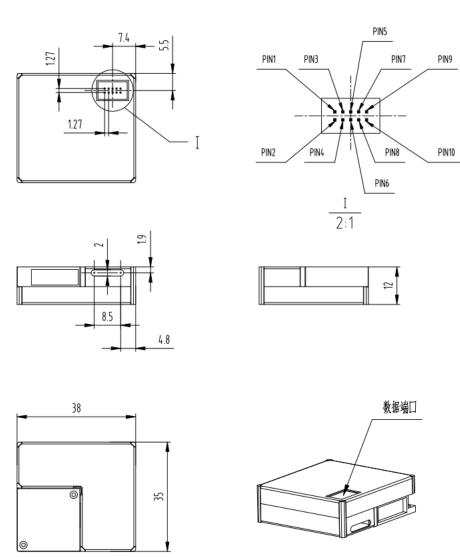
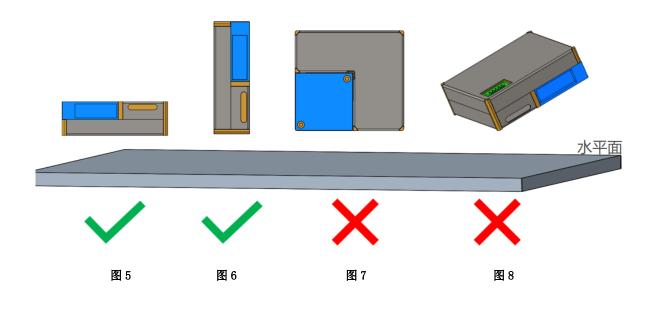
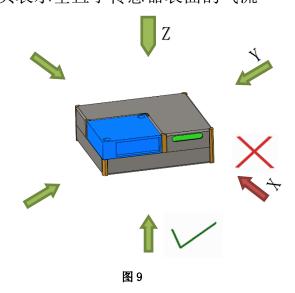



图 3-原理说明

传感器尺寸:

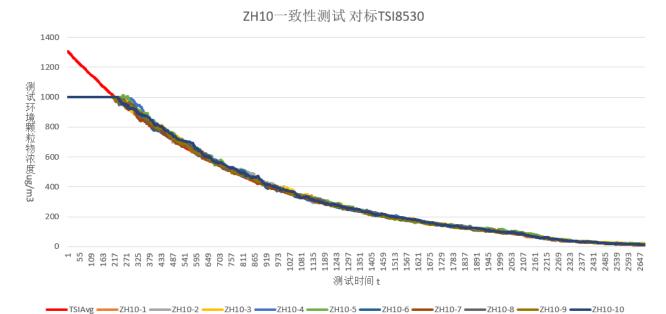
注:尺寸公差: ±0.5mm


图 4-尺寸说明


安装方式:

粉尘采集孔为传感器内部气流进气口,需要和外部空气保持良好接触;风扇安装位置为传感器内部气流 出气口。传感器安装使用时,避免传感器周围有强气流干扰;如无法避免,尽量使外部气流方向与传感器 内部气流方向保持垂直。

在设计整机的探测腔体时,需充分考虑传感器采样口的有效面积,尽可能保证采样气路的通畅。小的采 样面积以及过大的气阻都将严重影响传感器数据精度。


箭头表示垂直于传感器表面的气流

以诚为本、信守承诺 创造完美、服务社会

PM2.5 典型输出特性:

图 10

说明:

图 10 表示常规 ZH10 激光颗粒物传感器在测试环境中同 TSI8530 的数据对比分析。

横坐标 表示: 测试时间,单位s;

纵坐标 表示 : 颗粒物浓度(以 TSI8530 数据为参考,单位 μ g/m³)。

注意事项

- 1、禁止拆卸传感器的屏蔽單及传感器內固定螺丝,因传感器的屏蔽單与传感器內部电源地有连通,如果 拆卸传感器屏蔽單会导致传感器抗干扰能力变差,传感器输出值会发生跳动,导致传感器性能变差。 另需注意传感器的金属屏蔽罩,应避免与其他外部电路或导电部件进行接触,从而减少外部干扰对传 感器的影响。
- 2、过度的撞击或震动会对传感器检测值的准确性和寿命造成影响,所以传感器在安装与使用过程应避免传感器受到跌落或振动。
- 3、本传感器适用于普通室内环境粉尘颗粒物的检测,实际使用环境应尽量避免油烟环境、粉尘颗粒物过大、高湿环境等,如:厨房、洗浴室、吸烟室、户外等环境。如使用在此类环境中应在用户设备上增加相应的防护措施,避免粘性粒子或大的颗粒物进入传感器内部,在传感器内部形成存积而影响传感器的性能。(例如:在有絮状物或纤维的使用环境中,在传感器的进风口前应增加相应的粗滤网,避免絮状物或较大的杂物进入传感器内部,遮挡传感器光路,从而影响传感器的检测准确性。)
- 4、风扇处为出风口,粉尘采集孔为进气口,在传感器使用过程中应尽量避免将传感器直接安置于净化器自身风道内部,如无法避免应针对传感器安装位置设立一个独立的空间结构,气流方位参照图9所示,传感器不要受到红色箭头方向的气流冲击,传感器风扇出风口周围2cm之内不能有遮挡物,在这个独立的空间中应避免传感器出风口气流直接回流至进风口,从而影响传感器检测值的准确性。
- 5、在常温常压正常工作状态下,传感器的关键部件激光器可以连续不间断工作 30000 小时以上,也可以通过设置传感器的省电模式及工作间隔时间来大幅提升传感器的使用寿命,传感器最大累计工作寿命可达 5 年以上,详细操作方法参照用户接口说明,或以电话、邮件的方式联系我司的技术支持人员。
- 6、本说明书中提到传感器数据是确保传感器出厂个体之间的一致性,不以第三方检测仪器或数据作为对 比标准。如用户希望最终测量结果和第三方检测设备一致,可由用户根据实际采集结果进行数据拟合 修正。

激光粉尘可靠性测试:

表 3-可靠性测试

序号	试验 项目	试验条件	判定标准	试验数量 n 失效数量 c
1	零点输 出范围	实验舱符合洁净空气的要求 (粉尘质量浓度 不超过 $5.0 \mu g/m^3$),传感器上电运行,记录 6 次输出值。	零点输出范围: <10 μ g/m³	n=28 c=0
2	一致性	在 50 、 130 、 $260~\mu g/m^3$ 的每个浓度下记录 6 次传感器的输出值,共记录 18 次,分别取其最大值。	符合表1中: "PM2.5检测精度"的描述	n=28 c=0
3	工作 稳定性	传感器连续通电工作 15d, 测量零点输出范围和相对误差。	零点输出范围: <10μg/m³ 相对误差: ±10%	n=2 c=0
4	响应 时间	洁净空气中正常工作的传感器,至 $500 \mu g/m$ 3 的环境中并记录当前时刻 $t0$, 当传感器输出 值首次达到 $450 \mu g/m^3$ 时,记录此时的时刻 $t1$ 。计算响应时间 $t90=t1-t0$, 重复测量 3 次取平均值。		n=2 c=0
5	高浓度 淹没	传感器在 2000 μ g/m³ 的环境下通电工作 10min。 完成后测量零点输出范围和相对误差。	零点输出范围: <10 μ g/m³ 相对误差±10%	n=2 c=0
6	电源 ON/OFF	上电电压 DC5±0.1V 保持 5min; 断电保持5min,循环 24h。 完成后测量零点输出范围和相对误差。	零点输出范围: <10μg/m³ 相对误差: ±10%	n=2 c=0
7	工作噪声	背景噪声小于 30dB (A), 传感器稳定工作 20min, 与声级计放置于离地面 0.8m 高的同一水平面上, 两者相距 1m, 每台测量 3次,取其最大值。	工作噪声: ≤40dB (A)	n=2 c=0
8	低温 贮存	传感器不通电,-30±2℃环境条件,持续时间 16h,常温下稳定 2h。 完成后测量零点输出范围和相对误差。	传感器表面不应有明显的凹痕、划伤、 裂隙、变形等缺陷,涂、镀层不应有气 泡、龟裂、脱落,插接件、零部件应无	n=2 c=0
9	高温 贮存	传感器不通电,70±2℃环境条件,持续时间 16h,常温下稳定 2h。 完成后测量零点输出范围和相对误差。	松动和脱落, 金属元件不应有锈蚀和机械损伤。 零点输出范围: $<10 \mu g/m^3$ 相对误差: $\pm 10\%$	
10	高温 工作	传感器通电工作,50±2℃环境条件,持续时间 2h, 完成后测量零点输出范围。	传感器表面不应有明显的凹痕、划伤、 裂隙、变形等缺陷,涂、镀层不应有气 泡、龟裂、脱落,插接件、零部件应无	n=2 c=0
11	低温 工作	传感器通电工作,-10±2℃环境条件,持续时间 2h, 完成后测量零点输出范围。	松动和脱落,金属元件不应有锈蚀和机械损伤。 零点输出范围: <10 μ g/m³	n=2 c=0

表 3-可靠性测试

序号	试验 项目	试验条件	判定标准	试验数量 n 失效数量 c
12	振动试验	传感器不包装、不通电。 频率范围: (10~150)Hz; 正弦振幅值: 1.5mm; 频程: 10CT; x、y、z 3 个轴线,每个轴线 扫频 15 次。 完成后测量零点输出范围和相对误差。	传感器表面不应有明显的凹痕、划伤、 裂隙、变形等缺陷,涂、镀层不应有气 泡、龟裂、脱落,插接件、零部件应无 松动和脱落,金属元件不应有锈蚀和机	n=2 c=0
13	跌落 试验	包装好的传感器,1m的高度跌落在表面为混凝土或平滑坚硬的刚性表面。 6个不同的面各自由跌落一次。 完成后测量零点输出范围和相对误差。	械损伤。 零点输出范围: <10 μ g/m³	n=2 c=0
14	静电干扰	传感器通电,2000V 金属壳部位表面放电 8 次,试样周围 10cm 处接地板放电 2 次,每次 放电的时间间隔至少为 1s。 完成后测量零点输出范围和相对误差。	零点输出范围: <10 μ g/m³ 相对误差: ±10%	n=2 c=0

包装运输方式:

- 1. 将传感器按照下图所示放入珍珠泡棉托盘中。
- 2. 整盘传感器依次放入小盒(图11)中,最上方加泡棉盖板,每小盒可装20支传感器。
- 3. 按照订单需求数量选择适当纸箱:

纸箱 F: 355 x 310 x 285mm, 可容纳 160 支传感器。(图 12) 纸箱 D: 630 x 280 x 405mm, 可容纳 480 支传感器。(图 13)

备注: 纸箱包装运输注意防水。

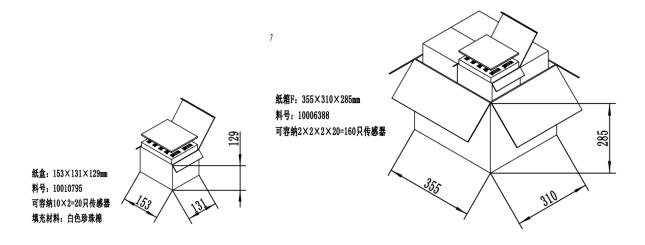
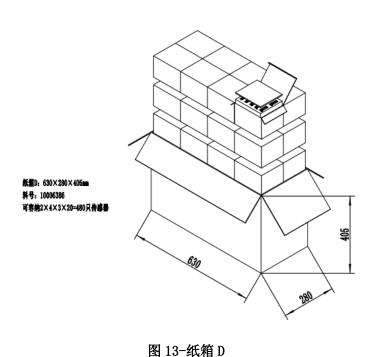



图 11-小盒

图 12-纸箱 F

郑州炜盛电子科技有限公司

地址:郑州市高新技术开发区金梭路 299 号 电话:0371-60932955/60932966/60932977

传真:0371-60932988

微信号: winsensor

E-mail:sales@winsensor.com Http://www.winsensor.com

