INOVANCE

IMC100R系列 机器人控制器用户手册

A03 资料编码 19010337 前言

感谢您购买使用汇川技术公司研发生产的 IMC100R 系列工业机器人控制器!

IMC100R 系列工业机器人控制器采用模块化设计,具有运动控制和基于 PLC 的逻辑控制功能,可通过 EtherCAT、PROFIBUS-DP, CAN 等多种工业现场总线实现复杂的工业机器人运动控制功能。该控制器 可实现 16 轴插补、32 轴联动运动控制功能,广泛应用于 6 关节标准机器人、SCARA、DELTA、多轴直 角坐标机器人以及多台机器人联动等。

IMC100R 系列工业机器人控制器采用 EtherCAT 总线与汇川技术的伺服系统、扩展模块进行高速通信,采用 TCP / IP 通讯连接工业视觉终端、远程监控终端、示教器实现互联互通,使系统简单可靠,是一款高性价比的工业机器人控制器。

§ 开箱验货

在开箱时,请认真确认:

- 1) 本机铭牌的型号及控制器额定值是否与您的订货一致。
- 2) 箱内含您订购的机器(附产品合格证)、用户操作手册(附产品保修卡)。
- 3) 产品在运输过程中是否有破损现象;若发现有某种遗漏或损坏,请速与本公司或您的供货商联系解决。

§ 初次使用

对于初次使用本产品的用户,应先认真阅读本手册。若对一些功能及性能方面有所疑惑,请咨询我公司的 技术支持人员,以获得帮助,对正确使用本产品有利。

§ 符合标准

IMC100R 机器人控制器符合以下指令和标准:

指令	指令名称	符合标准
		EN 61131-2
EMC 指令	2004/108/EC	EN 55011
		EN 61000-6-2
LVD 指令	2006/95/EC	EN 61131-2

对应欧洲标准时的注意事项:

图 1 CE 标记

- "CE标志"是在欧州地区进行商业贸易(生产、进口、销售)时,表示产品符合安全、环境标准等的标记。欧洲统一标准有机械产品的标准(机械指令)、电器产品的标准(低电压指令)、电磁干扰的标准(EMC指令)等。
- 2) 欧州地区的商业贸易(生产、进口、销售)必须有 CE 标记。
- 3) 本控制器符合低电压指令及 EMC 指令, 贴有 CE 标记。
 - 低电压指令: 2006/95/EC
 - EMC 指令: 2004/108/EC
- 4) 安装有控制器的机械和装置也必须有 CE 标记。
- 5) 将 CE 标记贴于安装有控制器的产品时,责任应由最终组装产品的客户承担。请由客户确认最 终产品的机械及装置是否符合欧洲统一标准。

目 录

前言			1
安全信	息与	注意事项	5
第1章	概	述	9
	1.1	系统构成	9
	12	系统构成说明	10
/// o 主			
弗 2 草	μţ	前抽述	11
	2.1	IMC100R 控制器产品信息	11
		2.1.1 各部件介绍	
		2.1.2 铭牌及型号	
		2.1.3 安袤八寸	12
		2.1.5 技术参数	
	2.2	本地扩展模块	16
		2.21 本地扩展模块外观及介绍	
		2.2.2 本地扩展模块的连接	
	2.3	远程扩展模块	18
		2.3.1 远程扩展模块介绍	
		2.3.2 远程扩展模块的连接	
第3章	安	装	19
	3.1	机器人控制器安装	19
		3.1.1 安装环境	19
	3.2	安装位置与空间	20
		3.2.1 安装方向	20
		3.2.2 安裝空间	21
	3.3	线缆与布线	21
		3.3.1 线缆要求	21
		3.3.2 布线要求	23
		3.3.3 接地要求	
第4章	示	教器	
	4.1	示教器操作说明	25
		4.1.1 示教器各部件说明	25
		4.1.2 按键功能说明	26

	4.2 示教功能说明	26
	4.3 示教前检查	28
	4.4 试运行	29
	4.4.1 运行前检查	29
	4.4.2 试运行步骤	29
第5章	故障诊断及对策	30
	5.1 机器人报警显示	30
	5.2 机器人报警及处理方法列表	32
第6章	日常保养与维护	35
	6.1 日常检查	35
	6.2 定期检查	35
	6.3 易损件更换	36
	6.3.1 SD 卡更换	
	6.3.2 电池更换	
附录 A	通信	
	A.1 CAN 总线使用说明	
	A.1.1 CAN 连接方式	
	A.1.2 CAN 传输距离	
	A.2 RS485 通讯总线使用说明	39
	A.2.1 RS485 连接拓扑	
	A.2.2 多节点连接方式	
	A.2.3 端子接线方式	40
	A.2.4 传输距离与卫总数	
	A.2.1 EtherCAT 通讯使用说明	
	A.3.2 EtherCAT 通讯按用说明	
附录 B	编程指令一览表	44
	B.1 编程指令一览表	44
	B.2 基本运算符号含义说明	51
附录 C	、版本变更记录	

安全信息与注意事项

§ 使用前

在对本产品进行安装、接线、操作、检查前,应仔细阅读本手册以及本手册中介绍的关联手册,同时在充 分注意安全的前提下正确地操作。请妥善保管本指南以备需要时阅读,并请务必将本手册交给最终用户。

§ 安全等级

在本手册中,安全等级有以下两类:

本手册中凡使用到这2类标记,均表示该处是有关安全的重要内容。如果不遵守这些注意事项,可能会导 致死亡或重伤、并损坏本产品、相关机器及系统。另外,因贵公司或贵公司客户未遵守本手册的内容而造 成的伤害和设备损坏,本公司将不负任何责任。

§ 安全注意事项

注

在运输含锂电池设备时,必须遵守运输规定。

- 8 -

第1章 概 述

1.1 系统构成

汇川机器人控制系统由 IMC100R 机器人控制器、IS620N 伺服系统、IMC100 系列高速扩展模块、视觉系统、ITP100 系列示教器、HMI、工业计算机、低压电源等组成。该系统支持种高速总线,通过 EtherCAT 与 IS620N 系列伺服高速通信,实现机器人的精准位姿控制;通过 Ethernet 总线与工业 PC、示教器、HMI等工业现场设备通讯,实现机器人的示教和监控。本地的高速扩展模块通讯通过 IRlink 总线将现场的 IO 信号和各种传感器信号传回 IMC100R 控制器。

系统构成如下图所示:

图 1-1 IMC100R 系列机器人控制系统

1.2 系统构成说明

表 1-1 IMC100R 系列机器人控制系统

名 称		功 能
机器人控制器	IMC100R	主控制器
示教器	ITP100	机器人示教工具
伺服驱动器	IS620N	驱动伺服电机正反转
伺服电机	ISMH1	给机械装置提供动力
24V 直流电源模块	AM600-PS2	220VAC 转 24VDC, 2A 输出
本地扩展模块	详见 2.2 节	通讯、IO、DA、AD、ENC 等本地扩展模块
远程扩展模块	详见 2.2 节	通讯、DI、DO、AI、AO 等远程扩展模块

第2章 产品描述

2.1 IMC100R 控制器产品信息

2.1.1 各部件介绍

图 2-1 主控制器结构外观

2.1.2 铭牌及型号

产品铭牌

图 2-2 产品铭牌与型号说明

2.1.3 安装尺寸

图 2-3 IMC100R 控制器安装尺寸

2.1.4 接口定义

表 2-1 IMC100R 系列机器人控制器接口定义

接口名称	功能	使用说明	外观
USB	程序更新及调试	使用 U 盘更新用户程序和数据	USB
SD 卡接口	用于存储用户程序与 用户数据	可带电更换,安装方法见 6.3 节	
	PWR	电源指示灯	PWR
	CTR	控制系统状态指示	CTR
指示灯	SYS	操作系统状态指示	SYS
	ECAT	EtherCAT 状态	ECAT
	IR	IRlink 状态	IR 🔲
标准以太网口	 标准以太网功能 系统程序调试,网络诊断 示教器通讯口 	标配两个以太网接口,实现程序的上下载、 支持 Ethernet/IP、TCP/IP 及 ModbusTCP 等多种以太网通讯协议。 NET1 出厂 IP 地址为:自动获取 NET2 出厂 IP 地址为:192.168.23.25	EtherNet1 EtherNet2
工业以太网口	EtherCAT 总线接口	标配两个工业以太网接口,支持 EtherCAT 通讯协议。与支持 EtherCAT 的伺服以及各 种扩展模块通讯,支持串行和环形组网形式。	EtherCAT1 EtherCAT2
RS485/CAN 接口	支持 CAN 协议(本地 IO 通讯使用) 支持 RS485 协议(本 地 IO 通讯用)	支持 Modbus RTU 及自由口通讯:支持 CAN 通讯: 可与任意第三方的驱动器、HMI 及传感器 等设备通讯。	CAN/485
24V 电源输入端子	接入 24V 电源为控制 器供电	用户需自行接入 24V 电源,接线端子已随 机附赠。	+24V • - • - • •
IRlink 接口	基于 422 的自定义串 行总线接口	标配两个 IRlink 接口,支持汇川自定义通讯 协议,可与本地高速扩展模块通讯	IR-link1 IR-link2

名称	定义	灯颜色	状态
PWR	电源指示灯	绿色	绿色亮表示电源正常 灯灭表示电源不正常
CTR	控制系统状态指 示	红绿双色	绿色亮表示控制系统都工作正常 红色亮表示控制系统工作不正常 都灭表示正在初始化
SYS	操作系统状态指 示	绿色	绿灯闪表示操作系统正常工作 常亮或者常灭表示操作系统不正常
ECAT	EtherCAT 状态	绿	常灭表示 EtherCAT 总线尚未启动 快闪表示 EtherCAT 总线正在初始化 慢闪表示 EtherCAT 总线正在周期运行 常亮代表 EtherCAT 总线通讯故障
IR	IRlink 状态	绿	常灭表示 IRlink 总线尚未启动 快闪表示 IRlink 总线正在初始化 慢闪表示 IRlink 总线正在周期运行 常亮表示 IRlink 总线通讯故障

表 2-3 RS485/CAN 接口 DB9 引脚定义

引脚	定义	说明	外观
1	CGND	通讯地	
2	CANL	CAN 负	$\langle \circ \rangle$
3	CGND	通讯地	5
4	NC	NC	$4 \rightarrow 2$
5	485+	485 正	$3 \rightarrow 2$
6	NC	NC	2 - 6
7	CANH	CAN 正	
8	NC	NC	$\langle \bullet \rangle$
9	485-	485 负	

- 14 -

2.1.5 技术参数

表 2-4 技术参数

项目	规格	详细描述	
名称	IMC100R	多微处理器实时运算平台,具有运动控制功能,支持 多种型号工业机器人结构;采用 EtherCAT 总线实现 网络化控制,以及远程和本地 IRlink 总线的扩展模块 逻辑控制。	
控制轴数	>16 轴	支持至少 16 轴插补运动高端控制器;单台控制器控制多台机器人,并可同时控制多个外部扩展轴。	
适用机型	标准及非标机型	支持直角坐标、SCARA, DELTA, 四轴码垛、六关 节机器人等标准机型, 以及各种非标机型。	
	PTP 方式, CP 方式(连续路径控制)	
运动力式	支持空间直线插补,空间圆弧插补		
	编程语言自定义	GUI 开发环境(易用化,集成化,工艺内嵌)	
	关节控制	同时控制至少16轴,AC 伺服控制器	
控制功能	速度控制	PTP 控制时,可在 1-100% 间编程控制; CP 控制时,可以自由指定实际速度控制	
	加速度控制	PTP 控制时,可在 1-100% 间编程控制; CP 控制时,可以自由指定实际速度控制	
PLC 功能	支持 IEC61131-3 标准, PLC 编程功 测和对输出口的控制以及与系统内核	能,实现对所有 I/O 资源的灵活编程,对输入口的检 ;进行数据交换	
安全功能	异常停止开关,有安全门输入而暂时停止,速度偏差过量检测,位置偏差过量检测,存储 异常检测,CPU异常检测,带键模式切换,锁定;		
いわな星	程序类	>16Mb	
吃忆谷里	点数据类	最大 10000 点	
存储方式	外部 SD 扩展卡	8G 容量,运行程序备份存储	
示教方法	远程示教,手持示教器,CAD-to-Po	int 示教(离线编程)	
伺服接口	总线配置 EtherCAT 主站接口;	32轴联动,扫描周期<500us,实时数据量>20字/轴,	
	全双工,100 Mbit/s (100Base-TX)	支持多通道机器人控制;	
电源	控制器输入电压: 24V; 不含驱动装	置;	
运行温度	-10℃~45℃,按照 IEC61131-2		
存储温度	-20℃~85℃,按照 IEC61131-2		
安全等级	IEC61131-2		

2.2 本地扩展模块

2.2.1 本地扩展模块外观及介绍

图 2-4 本地扩展模块

表 2-5 本地扩展模块功能说明

模块名称	型号	功能
电源模块	AM600-PS2	220VAC 输入,24VDC/2A 输出电源模块(必选)
通讯模块	IMC100-RTU-ICT	IRlink 通讯扩展模块(必选)
编码器模块	IMC100-2ENID	2 通道差分输入增量编码器采集扩展模块
AD 模块	IMC100-8AD	4 通道电压和 4 通道电流模拟量转换输入采集扩展模块
DA 模块	IMC100-4DA	4 通道电压或电流模拟量转换输出扩展模块
IO 模块	IMC100-0808-ETND	8 通道输入 8 通道输出通用 IO 扩展模块

2.2.2 本地扩展模块的连接

1) 通讯模块接口定义

IRlink 通讯扩展模块有两个通讯端口, IN: 上行端口; OUT: 下行端口; 端口线序和标准以太网兼容。

通讯模块

图 2-5 通讯模块接口示意

2) 与控制器的级联方法

本地扩展模块与 IMC100R 系列控制器的级联方法如下图所示,理论上对站点数没有限制,可以组成无限的通讯网络,满足多点控制的系统需求。

图 2-6 本地扩展模块的级联示意图

2.3 远程扩展模块

2.3.1 远程扩展模块介绍

远程扩展模块的使用说明请参见各模块随机使用说明或《AM600系列可编程逻辑控制器硬件手册》(资料编码: 19010322),订货索引如下表所示:

表 2-6 远程扩展模块订货索引

订货编码	产品型号	功能说明
01440010	AM600-PS2	AM600-PS2Z-AM600 系列中型可编程控制器电源模块(必选)
01440005	AM600-1600END	AM600-1600ENDZ-AM600 系列中型可编程控制器 16 路数字量输入模块(必选)
01440003	AM600-0016ETP	AM600-0016ETPZ-AM600系列中型可编程控制器 16 路数字量晶体管 PNP 输出模块
01440018	AM600-0016ETN	AM600-0016ETNZ-AM600 系列中型可编程控制器 16 路数字量晶体管 NPN 输出模块
01440017	AM600-0016ER	AM600-0016ETPZ-AM600系列中型可编程控制器 16 路数字量继电器输 出模块
01440006	AM600-4AD	AM600-4ADZ-AM600系列中型可编程控制器 4 路模拟量输入模块
01440007	AM600-4DA	AM600-4DAZ-AM600系列中型可编程控制器 4 路模拟量输出模块
01440013	AM600-RTU-ECT	AM600-RTU-ECTZ-AM600 系列中型可编程控制器 EtherCAT 通讯模块
01440009	AM600-4TC	AM600-4TCZ-AM600系列中型可编程控制器 4 路输入热电偶温度检测模块
01440008	AM600-4PT	AM600-4PTZ-AM600系列中型可编程控制器 4 路输入热电阻温度检测模块

2.3.2 远程扩展模块的连接

远程扩展模块与 IMC100R 系列控制器的级联方法如下图所示。

图 2-7 远程扩展模块的级联示意图

第3章 安装

3.1 机器人控制器安装

3.1.1 安装环境

- 环境温度:周围环境温度对控制器寿命有很大影响,不允许控制器的运行环境温度超过允许温 度范围(-10℃~45℃)。
- 2) 将控制器垂直安装在安装柜内的阻燃物体表面上,周围要有足够空间散热。
- 3) 请安装在不易振动的地方。振动应不大于 0.6G。特别注意远离冲床等设备。
- 4) 避免装于阳光直射、潮湿、有水珠的地方。
- 5) 避免装于空气中有腐蚀性、易燃性、易爆性气体的场所。
- 6) 避免装在有油污、粉尘的场所,安装场所污染等级为 PD2。
- 7) IMC100R系列产品为机柜内安装产品,需要安装在最终系统中使用,最终系统应提供相应的防 火外壳、电气防护外壳和机械防护外壳等,并符合当地法律法规和相关 IEC 标准要求。

图 3-1 安装环境要求

表 3-1 环境要求

描 述 -10℃~45 ℃
-10℃ ~ 45 ℃
90%RH 以下 (不结露)
-20℃~85℃(不冻结)
90%RH 以下 (不结露)
4.9m/s² 以下
19.6m/s² 以下
IP20

3.2 安装位置与空间

3.2.1 安装方向

通过两枚 M5 螺钉将控制器固定在安装面上。,安装时请注意安装的位置,请将机器人控制器正面(操作人员的实际安装面)面向操作人员,并使其垂直于墙壁。

图 3-2 安装方向

3.2.2 安装空间

为了利于通风以及模块更换容易,模块上下部分与建筑物及与周围部件之间应留出相应距离,如图3-2所示

图 3-3 安装空间

3.3 线缆与布线

3.3.1 线缆要求

1) 线缆分类

等级一:敏感信号(低压模拟量信号,高速编码器信号,高速通讯信号、正负 10V 模拟量信号,低速 422、485 信号,数字输入输出信号)

等级二:干扰信号(低压电源,接触器控制线,带滤波器的电机线高压交流电源线,不带滤波器的电机线)

2) 电缆选型

输入输出主回路电缆推荐使用对称屏蔽电缆。与四芯电缆相比,使用对称屏蔽电缆可以减少整个传导系统 的电磁辐射。 1) 推荐的功率电缆类型——对称屏蔽电缆:

图 3-4 对称屏蔽电缆示意图

2) 推荐的信号线缆类型——双绞屏蔽电缆:

图 3-5 双绞屏蔽电缆示意图

- 注意: 数字信号线推荐使用双绞屏蔽线缆。
 - 3) 推荐的通讯线缆类型——屏蔽通讯线缆

图 3-6 通讯线缆屏蔽层示意图

使用的水晶头必须是带屏蔽金属壳 (如下图所示)。通讯线缆的屏蔽层与水晶头的屏蔽铁壳压接在一起。

图 3-7 带屏蔽金属壳水晶头示意图

3.3.2 布线要求

- 1) 功率电缆应远离所有信号电缆敷设。
- 2) 电机电缆、输入电源线和控制回路电缆尽量不要布线在同一线槽。
- 3) 避免电机电缆与控制回路长距离并行走线,耦合产生的电磁干扰。
- 4) 同一线槽中不同等级线缆之间最少保持 100mm 间距。

图 3-8 不同等级线缆布线间距

不同等级的线缆分开布置,长距离电缆同向布线时应该将不同等级线缆之间最少保持 100mm 间距。 推荐的电缆布线图如下图所示:

使用导体做为背板(采用没有被喷塑的锌板)将控制器的金属部分直接与背板连接。 根据等级保持电缆的分离,如果不同等级的线缆必须交叉,则应该保持 90°交叉。

第3章 安装

3.3.3 接地要求

接地要求

请务必将接地端子接地,否则可能有触电或者干扰而产生误动作的危险。

1) 电源线接地要求

2) 差分信号线(CAN/RS485/RS422)

采用双绞屏蔽线缆,屏蔽层在电缆两端必须连接 0V。

第4章 示教器

4.1 示教器操作说明

IMC100R 系列控制器配备 ITP100 示教器配套使用。ITP100 示教器采用摇杆、触摸、离线编程等操作方式; 支持图形化编程方式,编程简单易学;支持用户二次开发,并支持用户自定义的函数开发;提供多种机械 结构的运动学算法;丰富的功能便于各种工艺应用:多种插补方式,随动控制、软浮动控制等。

4.1.1 示教器各部件说明

图4-1 ITP100示教器外观示意图

- 1) 摇杆: 机器人运动操作杆, 可操纵机器人作相应的关节运动。
- 2) 显示屏: 机器人示教器与客户交互窗口, 可进行编程、调试、监控等操作。
- 3) 急停开关: 机器人紧急停止按钮
- 4) 三位开关:包含三个位置,中间位置,机器人使能;弹起或者用力按下机器人均不使能

4.1.2 按键功能说明

表4-1 按键功能表

按键	按键名称	按键功能
>	速度增	速度增加,按下按钮,速度值增1,长时间按下按钮,速度持续上升。
< <u><</u>	速度减	速度减少,按下按钮,速度值减1,长时间按下按钮,速度持续下降。
1/2	轴切换	摇杆功能切换按钮。摇杆控制轴在 1/2/3(X/Y/Z)轴和 4/5/6(A/B/C) 轴 或更多组之间切换。
٤_	外部轴切换	当机器人有外部运动轴时,控制轴按钮切换至外部运动轴。
1 2	坐标系选择	进行坐标系的切换:关节坐标系、直角坐标系、工具坐标系、用户坐标 系
$\overline{}$	点动	示教运动方式,示教模式下,选择该模式,机器人使能后,按下轴方向 运动按键,机器人在该方向上运动指定偏移量
►	再现启动 / 示教检 查连续运行	运行模式下,选择该按钮,机器人在再现运行所选程序, 示教模式下,按下该按钮,机器人连续运行,松开按钮,机器人暂停运行。
\bullet	停止	机器人运行时,选择该按钮,机器人停止运行。
	前进	示教模式下,程序运行所选择行,光标跳转至下一行。
F	后退	示教模式下,程序运行所选择行,光标跳转至上一行。

4.2 示教功能说明

1) 示教速度的选择

示教速度的调整有两种方式,可以通过界面上选择示教速度的档位,包括微动 (5%)、低速(25%)、中速(50%)、高速(100%)四个档位。

可以通过示教盒上速度按键进行调整。比如:

速度增加,按下按钮,速度值增1,长时间按下按钮,速度持续上升。

2) 坐标系的选择

用户可以在不同的坐标系下手动操作机器人,在操作机器人之前,必须得选择坐标系。用户可选择的坐标 系分为:关节坐标系、直角坐标系、工具坐标系、用户坐标系4类。用户也可以通过两种方式选择需要的 坐标系:

选择示教盒上按钮 ,进行坐标系的切换。

选择示教器界面上控制工具栏中坐标系图标,进行坐标系的选择。

3) 轴切换

2: 摇杆功能切换按钮。摇杆控制轴在 1/2/3 (X/Y/Z)轴和 4/5/6(A/B/C)轴组之间切换。

4) 关节单轴示教

机器人在关节坐标系下操纵杆的控制方向如下图所示:

在示教模式下,选择关节坐标系,按下三位开关,待机器人使能后,按上图方向操作操纵杆,机器人作相 应的关节运动。

5) 直角单方向示教

机器人在直角坐标下,操纵杆控制机器人的直角运动方向如下图所示:

在示教模式下,选择直角(工具、用户)坐标系,按下三位开关后,待机器人使能后,按上图方向操作操 纵杆机器人,机器人在相应的坐标系下作单方向运动。

4.3 示教前检查

完成程序示教编辑后,在程序再现运行前,需对程序进行示教检查。示教检查的步骤如下:

- 1) 把电气柜上模式开关置于手动模式。
- 2) 确保急停开关松开,检查并清除报警状态。
- 3) 设置要示教检查运行的速度。
- 4) 按下三位开关,使机器人处于使能状态。
- 5) 选择要示教检查的程序行号。
- 6) 按下前进键,程序运行当前行程序直至完成,光标下移一行。
- 7) 步骤6或者按下后退键,程序运行当前程序直至完成,光标上移一行。
- 8) 步骤6或者按下启动键,程序从当前行向下运行。
- 9) 检查机器人运行轨迹以及程序逻辑是否正确。

10)步骤6、7完成一行程序的试运行后,松开按键,再次按下即可继续单步的前进或者后退运行程序。

程序自动运行的操作步骤:

- 1) 检查机器人设备是否完好以及周围设备是否运行正常。
- 2) 把机器人调至适当(可直接运行程序)位置。
- 3) 把电气柜上的模式开关置于自动档位。
- 4) 选择程序运行的起始行号。
- 5) 调整程序的运行速度。
- 6) 选择启动按钮,机器人开始再现运行。

程序自动运行后,在程序行列表中显示机器人实时运行的行号,在程序右侧的显示栏中,实时显示机器人 的关节坐标和直角坐标。在程序运行的过程中,可以实时地通过示教器上速度调整按钮调整机器人的运行 速度。

4.4 试运行

4.4.1 运行前检查

通电运行前请进行以下检查:

序号	内容
1	机器人控制器,伺服驱动器,扩展模块外观无明显的损坏。
2	配线端子已进行绝缘处理。
3	机器人控制器,伺服驱动器,扩展模块内部无螺丝或金属片等导电性或可燃性物体,接线端口处没 有导电异物。
4	机器人控制器,扩展模块,伺服驱动器,外部制动电阻未放置于可燃物体上。
5	急停回路通常,使能开关及电源开关置于 OFF 状态。
6	电源线,接地线,信号线,通讯线,限位及保护等线缆均配线完成及正确。
7	机械本体无故障,运行空间内无障碍。

4.4.2 试运行步骤

序号	内容
1	在不通电情况下,确认机器人控制器、扩展模块等电源线是否连接正确,确认伺服电源线,UVW线, 编码器线是否连接正确,以及确认机器控制器,扩展模块和伺服驱动器三者之间的通讯线是否连接 正确。
2	在不通电情况下,确认伺服 CN1 端子中抱闸接线及其外部继电器接线是否正确。
3	在通控制电情况下,检查检查伺服驱动器型号和电机型号是否匹配,并设置相应伺服 DIDO 功能码 参数,例如:伺服抱闸 DO 输出功能码设置。
4	在无伺服故障情况下,通主回路电,利用伺服面板或后台软件 JOG 功能进行各关节点动运行。
5	点动 JOG 运行过程中,确认旋转方向是否符合各关节正反方向的定义。
6	将各关节点动JOG运行到行程中间位置后,启用伺服惯量辨识功能,辨识出各关节轴的负载惯量比。
7	示教器使能伺服,低速示教多个点并连续运行,在此过程中进行伺服增益调试,确保运行平稳无抖动。
8	机器人控制器发出指令,控制机器人逐步由低速到高速往复运行,加减速也可由小到大逐步增加, 在此过程中反复细致调节各关节伺服相关增益参数,提高伺服跟随响应。
9	在上述调试步骤中,如遇到伺服驱动器故障,请查阅伺服手册,排除故障后,重新上电再运行。
10	在上述调试步骤中,如遇到机器人控制器故障,请查阅机器人控制器操作手册,排除故障后,重新 上电再运行。

第5章 故障诊断及对策

5.1 机器人报警显示

再现过程中如果发生报警,机器人会立即停止。运行界面的右上角会出现报警图标。同时运行界面下方的 信息提示栏将会出现具体报警的报警号以及相关的提示信息。如下图所示。

INDVINC	[] 编程 []	◎ 监控	()设置					
机器人设	置零点设置	坐标系设置	运动参数	外设配置	系统设置	力能扩展	🖹 保存	
通讯设置	时间日期	用户设置	语言选择	自定义报警	多任务配置	其他设置		
	示教器通讯 					_		
	连接状态:	已连接						
	端口: 33	333			断开			再現 示教 急疫
	IP地址: 10) · 44	· 97	· 87	连接			OFF OFF
	控制器Eth1设置					_		
	动态IP开关:	10	. 44	. 97	. 87			
	 客户端 		服务器	ł				
Joint:	J1:0.000	J2:-0.000	J3:-0.001	J4:0.000	J5:0.000	J6:0.000	< 👤	
(1) 通知	报警[0x807f]:配置	記R-LINK类型错误	1					

如果有多条报警信息,信息提示栏则显示的为最后一条信息。

示教过程中如果发生报警,机器人会马上停止。界面显示与再现过程报警类似,但示教过程如果发生的是 超限报警,则机器人不能继续在同一个方向进行示教,此时可以往相反的方向进行示教。机器人离开极限 位置,报警自动消除。 在监控画面,点击日志,进入日志子界面,如下图所示;机器人的所有报警将会按照时间顺序依次排列; 有时候日志页面显示的报警信息与系统下方信息栏的报警有些滞后,用户也可以通过退出或切换标签栏的 方式,刷新当前的报警信息。

全局变量 局部变量 IO监控 通信状态 伺服状态	日志 版本信息
操作日志 报警日志	
序号 错误码 描述	Eite
0 0x807f 配置IR-LINK类型错误	2018-08-30 18:01:50.789
1 0x807f 配置IR-LINK类型错误	2018-08-30 18:01:50.789
2 0x2201 轴3正限位报警	2018-08-30 17:59:44.749 再现 示教
3 0x2201 轴3正限位报警	2018-08-30 17:59:30.505
4 0x0080 急停报警	2018-08-30 17:58:13.619
5 0x0080 急停报警	2018-08-30 17:53:52.126
6 0x0080 急停报警	2018-08-30 17:53:47.088
7 0x100d 设备运行异常,主动断开网络连接	2018-08-30 17:45:59.651
8 0x100d 设备运行异常,主动断开网络连接	2018-08-30 12:50:11.598
9 0x100a 发送的是非文件	2018-08-30 12:48:30.317
Joint: J1:0.000 J2:-0.000 J3:-0.001 J4:0.000	J5:0.000 J6:0.000
 ④ 通知 报答(0x807府):配置iR-LINK关型指误 ? 	

在机器人处于报警状态下,通过按下急停键按钮,可以将目前能够清除的报警从页面下方的信息栏中清除。 但如果机器人硬件自身软硬件出现故障,如伺服报警、EtherCat 配置错误、底层驱动错误等错误。信息栏 报警无法被清除,此时要检查硬件连接并重新上电,如果报警信息依然存在,则需要联系厂家。

5.2 机器人报警及处理方法列表

序号	错误码	消息	故障原因	处理方法
1	0x0001	初始化失败	 1. 创建或打开 ParaFile. PF 文件失败; 2. 创建或 打开 ComErrorFile.PF 文 件失败; 3. 创建或打开 ServoWarnFile.PF 文件失败; 	检查系统硬件; 断电重新启动;
2	0x0007	EtherCAT 通信打开失败	1. 配置文件错误; 2.EtherCat 从站与系统配置不符;	1. 恢复出厂设置,并重新上电; 2. 检查从站配置
3	0x0008	打开参数配置文件失败	参数配置文件开发失败或文 件损坏	恢复出厂设置,并重新上电
4	0x0009	译码错误	程序语法错误	检查程序编写规范
5	0x000A	译码行号错误	示教盒发送行号指令超出范 围	检查示教程序是否有误
6	0x000B	IO 等待时间超时	IO 等待的时间超出设置时间	1. 检查 IO 端口; 2. 重新设置等待 时间
7	0x000C	读取指令错误	1. 示教文件损坏; 2. 示教文 件编写不符合规范	1. 重新示教文件; 2. 检查示教程序 编写规范;
8	0x000D	子程序不容许嵌套调用	子程序有嵌套调用	更改示教程序
9	0x000E	运动指令译码错误	运动指令译码错误	检查示教程序
10	0x000F	无法找到初始化文件	初始化文件损坏或丢失	1.恢复出厂默认值,重新上电; 2.更换硬件
11	0x0010	再现数据计算错误	1. 示教点取点错误; 2. 示教 点在奇异范围	重新选取示教点
12	0x0012	Jump 指令失败	1.jump 指令中点数据计算错误	重新选取示教点
13	0x1001	文件或目录操作失败	操作不合规范	重新新建或打开
14	0x100D	异常导致网线断开	1. 不按正常操作关闭手持盒; 2 异常的断网	1. 非正常操作的错误,请在关闭时 候主动断开: 2. 异常要结合目前 己有的错误码检查错误原因
15	0x100E	时间设置失败	时间格式或连接网络等失败	检查格式、连接网络、系统电池
16	0x110E	系统配置错误	机型、站点等不匹配或者网 络掉线	检查机型、站点配置和网络连接
17	0x2001	段数据重合	前次输入和本次输入的目标 位置一样	重新示教点
18	0x2002	圆弧输入参数计算错误	无法计算出圆弧插补信息	重新示教其他点计算圆弧
19	0x2003	直线输入参数计算错误	无法计算出直线插补信息	重新示教其他点计算直线

IMC100R系列机器人控制器用户手册

第5章 故障诊断及对策

序号	错误码	消息	故障原因	处理方法
20	0x2004	逆解运算错误	出现速度过大或出现编码器 位置突变	下伺服,然后切换至关节模式, 清除报警后再上伺服,并将机器人 移动至合适位置
21	0x2005	奇异位置错误报警	机器人运动到奇异位置点, 如 2,3 关节拉直,5 关节处于 0 度附近	切换至关节模式,然后移动机器人 离开奇异位置点
22	0x2006	再现运动中出现掉伺服	可能某个关节的驱动器出现 故障	检查驱动器是否出现异常
23	0x2007	保留	姿态变化太大	重新示教其他点计算本段规划
24	0x2008	IO 的 Index 访问范围超 出	IO 访问物理端不存在	检查是否有没有对应的物理 IO 模 块
25	0x2009	备用	最大高度大于限位,或起始 位置大于最大高度,或终止 位置大于最大高度	修改对应的参数,修改限高,或重 新选取起始位置或终止位置
26	0x2101	轴 1 正限位报警	到达关节极限位置	往关节的反方向运动,若非关节模 式,先切换至关节模式
27	0x2102	轴 1 负限位报警	到达关节极限位置	往关节的反方向运动,若非关节模 式,先切换至关节模式
28	0x2103	轴 1 驱动报警	驱动器出现报警	根据驱动器功能码,做相应的故障 排除
29	0x2104	轴 1 规划溢出报警	规划值超出了最大计算范围 -1073741823~1073741824	检查绝对原点位置是否选择在靠近 计数极限边沿位置, 若是,则在原点位置时,将驱动器 位置清圈数
30	0x2105	轴1跟随误差过大报警	规划位置和实际位置差过大	调整伺服参数,将相应滞后减小
31	0x2106	轴1速度过大报警	运行速度大于设定的最大速 度	降低笛卡尔空间的最大速度
32	0x2111	轴2正限位报警		
33	0x2112	轴 2 负限位报警		
34	0x2113	轴2驱动报警	同轴 1	同轴 1
35	0x2114	轴 2 规划溢出报警		PU+四
36	0x2115	轴2跟随误差过大报警		
37	0x2116	轴2速度过大报警		
38	0x2201	轴 3 正限位报警		
39	0x2202	轴3负限位报警		
40	0x2203	轴3驱动报警	同轴 1	同轴 1
41	0x2204	轴 3 规划溢出报警	i na dini n	Г Г Ф ЛАС I
42	0x2205	轴3跟随误差过大报警		
43	0x2206	轴3速度过大报警		

序号	错误码	消息	故障原因	处理方法
44	0x2211	轴4正限位报警		
45	0x2212	轴4负限位报警		
46	0x2213	轴4驱动报警		
47	0x2214	轴 4 规划溢出报警	1月11日11日	
48	0x2215	轴4跟随误差过大报警		
49	0x2216	轴4速度过大报警		
50	0x2301	轴 5 正限位报警		
51	0x2302	轴 5 负限位报警		
52	0x2303	轴 5 驱动报警		
53	0x2304	轴 5 规划溢出报警	1月11日11日	可轴 1
54	0x2305	轴 5 跟随误差过大报警		
55	0x2306	轴 5 速度过大报警		
56	0x2311	轴6正限位报警		
57	0x2312	轴 6 负限位报警		
58	0x2313	轴6驱动报警	目标(同轴 1
59	0x2314	轴 6 规划溢出报警	1月11日11日	
60	0x2315	轴6跟随误差过大报警		
61	0x2316	轴6速度过大报警		
62	0x8001	ECAT 通信初始化错误	ECAT 通信初始化错误	检查 FPGA 及 DSP 固件加载是否成功
63	0x8013	ECAT 从站配置错误	ECAT 从站配置错误	检查 ECAT 配置信息 确保配置正确保存后重启
64	0x8028	ECAT 通信运行错误	ECAT 通信运行错误	检查 ECAT 网络连接情况 检查 ECAT 从站是否有掉电等
65	0x8079	IRlink 初始化错误	IIRlink 通信初始化错误	检查 FPGA 固件加载是否成功
66	0x807A	IRlink 从站配置错误	IRlink 从站配置错误	检查 IRlink 配置信息 确保配置正确保存后重启
67	0x8090	IRlink 运行错误	IIRlink 运行错误	检查 IRlink 网络连接情况 检查 IRlink 从站是否掉电等
68	0xE002	系统错误	底层系统错误	更换硬件或升级系统

第6章 日常保养与维护

6.1 日常检查

由于环境的温度、湿度、粉尘及振动的影响,会导致器件老化,降低产品的使用寿命。因此,有必要实施 日常和定期的保养及维护,特别是针对高温环境、频繁起停场合、存在交流电源和负载波动环境、存在大 震动或冲击的环境、存在粉尘/盐酸类腐蚀性环境中应该缩短定期检查周期间隔。为确保产品功能正常和 产品免受损坏,请每日对以下项目进行确认,请复印该检查确认表进行使用,每次确认后在确认栏上盖签"确 认"章。

检查项目	检查内容	故障时对策	确认栏
		● 确认机械连接是否异常;	
机械	机械是否存在异常声 音和振动现象	● 确认电机是否缺相;	
		● 确认电机固定螺丝是否牢固。	
		 确认控制柜与电机之间线缆是否有绝缘破损; 	
安装环境	电柜和线缆槽是否异 常	● 确认安装固定支架是否有震动;	
		● 确认连接线缆端子是否有松动和被腐蚀穿。	
	主回路和控制回路间	 ● 确认输入电压是否在允许范围内; 	
1 111111111111111111111111111111111111	电源电压是否	● 确认周围是否有大负载起动。	

6.2 定期检查

请定期对运行中难以检查的地方检查, 应始终保持控制器处于清洁状态,有效清除产品表面积尘,防止积 尘进入产品内部,特别是金属粉尘。

检查项目	检查内容	检查内容	检查栏
整机		● 确认配电柜是否断电;	
	表面是否有垃圾、污垢、粉尘堆积	 用吸尘器清除垃圾或粉尘,以免 接触部件; 	
		● 表面污垢无法清除时,可以使用	
		酒精擦拭后待干燥挥发完全。	
线缆	动力线及连接处是否变色;	● 更换已经开裂的线缆;	
	绝缘层是否老化或开裂。	● 更换己经损坏的连接端子。	
	动作时是否吸合不牢或发出异响;		
电磁接触器外围	是否有短路、被水污、膨胀、破裂的 外围器件	● 更换已异常的元器件。	
	风道、散热片是否阻塞;	● 清扫风道;	
风迫週风口	风扇是否损坏;	● 更换风扇。	

检查项目	检查内容	检查内容	检查栏
搭制回路 丝 梁	控制元器件是否有接触不良;端子螺 丝是否松动;控制线缆是否有绝缘开 裂。	 清扫控制线路和连接端子表面异物; 再拖已砘损腐蚀的控制绊嘴 	

6.3 易损件更换

器件名称	寿命	备注
电池	》 =2 年	
SD 卡	》=2 年	

6.3.1 SD 卡更换

- 1) 从控制器取出旧 SD 卡
- 2) 将旧卡上的产品数据拷贝至新卡
- 3) 将拷贝数据的新 SD 卡插入控制器

安装 SD 存储卡后应确认其是否浮起。如果安装状态不充分将由于接触不良而导致误动作。 将 SD 存储卡按压一次后,需要笔直地将 SD 存储卡拔出。在使用 SD 存储卡的功能的执 行过程中不要将 SD 存储卡拔下。

6.3.2 电池更换

- 1) 从控制器电池仓取下电池座
- 2) 将电池座中旧电池取出
- 3) 放入新电池
- 4) 电池座插回控制器电池仓

将电池放入电池盒中,注意电池正极和电池盒上正极处于同一面,如图所示

更换电池会是系统时间恢复为出厂时间,更换新电池后需要重新设置系统时间。旧电池 请勿随意丢弃,请统一回收避免环境污染。

附录 A 通信

A.1 CAN 总线使用说明

A.1.1 CAN 连接方式

CAN 线连接拓扑结构如图 11-6 所示, CAN 总线推荐使用带屏蔽双绞线连接, CANH、CANL 采用双绞线 连接, 只在总线两端分别连接 120 Ω 终端匹配电阻防止信号反射;所有节点 CAN 信号的参考地连接在一起;最多连接 64 个节点,每个节点支线的距离要小于 0.3 米。

A.1.2 CAN 传输距离

CAN 总线的传输距离与波特率、通讯电缆有直接关系,最大总线线路长度与波特率关系如下表所示:

	传输距离	速率	节点数	线径
1	25m	1Mbps	64	0. 205mm ²
2	95m	500kbps	64	0.34mm ²
3	560m	100kbps	64	0. 5mm ²
4	1100m	50kbps	64	0.75mm ²

A.2 RS485 通讯总线使用说明

A.2.1 RS485 连接拓扑

RS485总线连接拓扑结构如C.5-2 所示,485总线推荐使用带屏蔽双绞线连接,485+、485-采用双绞线连接; 只在总线两端分别连接 120 Ω 终端匹配电阻防止信号反射;所有节点 485 信号的参考地连接在一起;最多 连接 128 个节点,每个节点支线的距离要小于 3M。

图 A-2 RS485 总线连接拓扑结构

A.2.2 多节点连接方式

菊花链连接结构

当节点数较多时,485总线一定要是菊花链连接方式。如果需要分支线连接,总线到节点间的分支长度越 短越好,建议不超过 3m,坚决杜绝星型连接。常见总线结构示意图如下:

◆ 采用分支线连接

注意:分支线建议不要超过 3m。

◆ 星形接线方式 (禁止使用)

A.2.3 端子接线方式

1) 对端口有 CGND 接线点的节点

请检查现场 485 总线是否包含三根线缆,且接线端子没有接反或者接错。如果使用的是屏蔽线缆,尤其需 注意,屏蔽层也必须接 CGND 端子,在任何节点或者中途位置,除了接节点的 CGND,屏蔽层都禁止接 其它任何地方(包括现场机壳,设备接地端子等都不能接)。

由于线缆的衰减作用,建议对连接长度大于 3m 的线缆都使用 AGW26 或者更粗的线缆,任何时候都建议 485+和 485-连接线缆使用双绞线缆。

a 多芯非屏蔽线

b 双绞屏蔽线

- 推荐接线线缆1:带双绞线缆的多芯线缆,取其中一对双绞线作为485+和485-的连接线,其它多余线缆拧 在一起作为CGND的连接线。
- 推荐接线线缆 2:带屏蔽层的双绞线缆,双绞线作为 485+和 485-的连接线,屏蔽层作为 CGND 的连接线。
- 对于采用屏蔽线作为连接线缆的场合,尤其需注意,屏蔽层只能接 CGND,不能接现场大地。
 2) 对于某些没有 CGND 接线点的节点

对于某些没有 CGND 接线点的节点,不能简单的将 CGND 或者屏蔽层直接接到节点的 PE 上,需按如下 方法进行处理:

- 处理方法一:在这个节点其它端口寻找是否有与485电路共用的参考地,如果有,总线的CGND线缆(屏蔽层) 直接接到这个 Pin 脚即可;
- 处理方法二:在节点单板上找到 485 电路的参考地,引线出来接 CGND 或者屏蔽层;
- 处理方法三:如果实在找不到 485 电路的参考地,如上图 CGND 线缆或者屏蔽层悬空,同时使用额外的接 地线将这个节点和其它节点的 PE 连起来。

A.2.4 传输距离与节点数

汇川公司标准 RS485 电路在不同速率下支持的最大节点数和传输距离如下表所示

序号	速率	传输距离	节点数	线径
1	115.2kbps	100m	128	AWG26
2	19.2kbps	1000m	128	AWG26

A.3 EtherCAT 通讯使用说明

A.3.1 EtherCAT 通讯使用说明

EtherCAT 是一个可用于工业现场级的超高速 I/O 网络,它使用标准的以太网物理层,改变标准以太网的链路层,传输速率是 100 Mbit/s (100Base-TX 或 100Base-FX),传输媒体双绞线或光纤。EtherCAT 是一项高性能、低成本、应用简易、拓扑灵活的工业以太网技术。

EtherCAT 系统由主站,从站组成。 EtherCAT 一网到底,协议处理直达 I/O 层:

- 无需任何下层子总线
- 无网关延迟
- 单一系统即可涵盖所有设备:
 - 输入输出, 传感器, 执行器, 驱动, 显示…
- 同步性:两设备间距 300 个节点,线缆长度 120 米,同步抖动小于 1us
- 刷新时间:
- 256 数字量 I/O: 11 µs
- 分布于 100 节点的 1000 开关量 I/O: 30 µs = 0.03 ms
- 200 模拟量 I/O (16 bit): 50 µs, 采样率 20 kHz
- 100 伺服轴 (每个 8 Byte IN+OUT): 100 µs = 0.1 ms
- 12000 数字量 I/O: 350 µs

主站实现只需要一张普通的网卡,从站需专用的从站控制芯片,如:ET1100、ET1200、FPGA等。 为了支持更多种类的设备以及更广泛的应用层,EtherCAT 建立了以下应用协议:

- CoE(基于 EtherCAT 的 CAN 应用协议)
- SoE (符合 IEC 61800-7-204 标准的伺服驱动行规)
- EoE (EtherCAT 实现以太网)
- FoE (EtherCAT 实现文件读取)

从站设备无需支持所有的通信协议,只需选择最适合其应用的通信协议即可。

A.3.2 EtherCAT 通讯拓扑结构

IMC100R 系列控制器支持 EtherCAT 通讯线性连接拓扑,连接示意图如下所示:

EtherCAT总线

附录 B 编程指令一览表

B.1 编程指令一览表

	String	格式	String < 变	量名 >=" 字符串";			
	C C	含义	定义字符串	变量			
		示例	String ss1	=" hello_world" ;			
			变量名:变	量名由字母和数字组成	,并只能以字母开头,且不能为关键字		
		参数	"字符串" 只能以字母	: 字符串的初始化值, 开头	只能以字母、数字、下划线组成,且		
	Assian	格式	B/R/D/LB/L	_R/LD*** = XXX;;			
		含义	定义变量				
运营		示例	LD3=(D3+	D1)/2.1;			
月 七		4.¥4	待赋值的变	量可为 B/D/R/LB/LD/L	R变量		
11日 今			右侧表达式	为由变量、数字、运算	算符组成		
	Incr	格式	Incr B/R/LE	B/LR ***;			
		含义	变量的自增	变量的自增			
		示例	Incr B1;				
		参数	变量取任意 B/R/LB/LR 变量				
	Decr	格式	Decr B/R/LB/LR ***;				
		含义	变量的自减				
		示例	Decr LB1;				
		参数	变量取任意	B/R/LB/LR 变量			
	Movj	格式	Movj <参数 1>,<参数 2>,<参数 3>,<参数 4>;				
		含义	快速插补,以点到点的方式运动到指定点				
		示例	Movj P[1],\	/[30],Z[0],User[1],Tool	[2],Acc[50],NWait,Until IN[1] == ON;		
				P[***]	位置变量		
			<参数 1>	Offset(P[***],PR***)	Offset 表示在点位偏移后得到的新位置		
				Pallet(托盘号,行号	根据(托盘号,行号,列号,层号)这		
运动			く会教の	,列 ,	些信息收托盈工的点位 是十速度的五公块。取入[0]。入[100]		
当指			<		取入迷侵的日分几, 収 V[0]~V[100]		
÷		参数	<参数 3>	Z[***]	加不相反,有 Z[0]~Z[5] 八千寺级,越 小越精确		
				User[用户号]	选用某个的用户坐标系		
			く 会数 45	Tool[工具号]	选用某个的工具		
			< 参数 4>	Acc[***]	最大加速度的百分比,取		
			(可选)	-			
				Nwait	无		
					用マん即町中原定理相で		

			<参数 4>	Until IN[IO 뮥]==	运动传感指令, 表示一直运动到某个	
		参数	(可洗)	OFF/ON	IO 接受到某个开关信号为止;若一直	
		+47	Maura	** 4	木肥友,则运动到结果点	
	Movc	俗式	NUVC > 今致 12,5 今致 22,5 今致 32,5			
		含义	圆弧插补, MOVC 指令两条连用, 以圆弧运动万式从当前位置经第1点 运动到第2点			
		示例	Movc P[1],V[30],Z[0],User[1],Tool[2],Acc[50],NWait,Until IN[1] == ON;			
				P[***]	位置变量	
			<	Offset(P[***],PR***)	Offset 表示在点位偏移后得到的新位置	
			、 愛女 12	Pallet(托盘号 , 行号 , 列号 , 层号)	托盘上的点位	
运			<参数 2>	V[***]	最大速度的百分比,取 V[0]~V[100]	
动 指			< 参数 3>	Z[***]	插补精度,有 Z[0]~Z[5] 六个等级,越 小越精确	
令		参数		User[用户号]	选用某个的用户坐标系	
		2 X		Tool[工具号]	选用某个的工具	
				Acc[***]	最大加速度的百分比,取	
			<参数 4> (可选)		Acc[0]~Acc[100]	
				Nwait	无须等待点到位即可执行下一条运动 指令之前的非预处理指令	
				Until IN[IO 号]== OFF/ON	运动传感指令,表示一直运动到某个 IO 接受到某个开关信号为止;若一直 未触发,则运动到结束点	
	Movl	格式	Movl <参数		3>,< 参数 4>;	
		含义	直线插补,以直线运动方式运动到指定点			
		示例	Movl P[1],V[30],Z[0],User[1],Tool[2],Acc[50],NWait, Until IN[1] == ON;			
				P[***]	位置变量	
			< 参数 1>	Offset(P[***],PR***)	Offset 表示在点位偏移后得到的新位置	
运			S ≫ W IF	Pallet(托盘号 , 行号 , 列号 , 层号)	托盘上的点位	
动			<参数 2>	V[***]	最大速度的百分比,取 V[0]~V[100]	
指 令		参数	< 参数 3>	Z[***]	插补精度,有 Z[0]~Z[5] 六个等级,越 小越精确	
				User[用户号]	选用某个的用户坐标系	
			6 WI	Tool[工具号]	选用某个的工具	
			<参数 4> (可选)	Acc[***]	最大加速度的百分比,取	
					Acc[0]~Acc[100]	
				Nwait	无须等待点到位即可执行下一条运动 指令之前的非预处理指令	

			<参数 4> (可选)	Until IN[IO 号]== OFF/ON	运动传感指令,表示一直运动到某个 IO 接受到某个开关信号为止;若一直 未触发,则运动到结束点	
	Jump	格式	Jump < 参数 1>,< 参数 2>,< 参数 3>,< 参数 4>;			
		含义	跳跃指令,形成"门"字形轨迹			
		示例	Jump P[1]	Jump P[1] ,V[30], Z[3],User[1],Tool[1],LH[60],MH[130],RH[60];		
				P[***]	位置变量	
			< 参数 1>	Offset(P[***],PR***)	Offset 表示在点位偏移后得到的新位置	
			2	Pallet(托盘号 , 行号 , 列号 , 层号)	托盘上的点位	
			<参数 2>	V[***]	最大速度的百分比,取 V[0]~V[100]	
			<参数 3>	Z[***]	插补精度,有 Z[0]~Z[5] 六个等级,越 小越精确	
				User[用户号]	选用某个的用户坐标系	
	参数			Tool[工具号]	选用某个的工具	
		参数		Acc[***]	最大加速度的百分比,取	
			<参数 4> (除 LH、 MH、RH 外,其它 为可选)		Acc[0]~Acc[100]	
运				Nwait	无须等待点到位即可执行下一条运动 指令之前的非预处理指令	
动				Until IN[IO 뮥]==	运动传感指令,表示一直运动到某个	
指					IO 接受到某个开关信号为止; 若一直	
Ŷ					未触发,则运动到结束点	
				LH[***]	从起始位置处的提升高度	
				MH[***]	运行过程中最高点相对于直角坐标系	
					零点的高度。	
		11. 15		RH[***]	到终止位置的下降高度	
	Home	格式	Home [***]			
		含义	回到上作原	.点		
		示例	Home[2];			
		参数	*** 为工作』	泉点号,目前支持3个,	原点,设置取 Home[0]~Home[2]	
	Velset	格式	Velset [***]	/OFF;		
		含义	设置全局速 OFF	度。该指令一经设置前	E在程序段一直生效,直至遇到 Velset	
		三向	Velset [30]	;		
		示例	Velset OFF;			
		参数				

	Set Out	格式	Set Out[输出端口号],ON/OFF,T[时间];
		含义	设置一段时间后某个输出端口的高低电平
		示例	Set Out[1],ON,T[5.12];
			Out[输出端口号]:输出端口,Out[0]~Out[255]
		参数	ON/OFF: 高电平 ON 或者低电平 OFF
			T[时间]: 延时时间,单位秒, T[0.000]~T[100.000]
	Set OG	格式	Set OG[输出组号],B***,T[时间];
		含义	把 B 变量的值转换成二进制数输出到对应的一组输出端口
		示例	Set OG[0],B1,T[5.1];
信			OG[输出组号]:输出端口组,OG[0]~OG[15]
号		参数	B***: 将十进制的 B 变量,解码为 8 位的二进制数,进而输出到端口组
处			T[时间]:延时时间,单位秒,范围T[0.000]~T[100.000]
理	Set IG	格式	Set IG[输入组号],B***,T[时间];
指		含义	把对应组号输入端口的二进制值转化为十进制,并赋值给 B 变量
4		示例	Set IG[1],B1,T[5.1];
			IG[输入组号]:输入端口组,IG[0]~IG[15]
		参数	B 变量: 输入信号二进制值将转成十进制, 存入该 B 变量
			T[时间]:延时时间,单位秒,范围T[0.000]~T[100.000]
	Set Aout	格式	Set Aout[电流输出端口号],< 电流 >,T[时间];
		含义	电流输出端口输出指定大小的电流
		示例	Set Aout[1],5.2,T[5.1];
			Aout[电流输出端口号]: 电流输出端口, Aout[0]~Aout[15]
		参数	< 电流 >: 电流值单位 mA, 范围 <0~100>mA
			T[时间]: 延时时间,单位秒,范围T[0.000]~T[100.000]
	Set Vout	格式	Set Vout[电压输出端口号],<电压>,T[时间];
		含义	电压输出端口输出指定大小的电压
		示例	Set Vout[1],5.2,T[5.1];
信			Vout[电压输出端口号]: 电压输出端口, Vout[0]~Vout[15]
号		参数	<电压 >: 电压值单位 V, 范围 <0.000~10.000>V
处			T[时间]:延时时间,单位秒,范围T[0.000]~T[100.000]
理	Set Ain	格式	Set Ain[电流输入端口号],D***,T[时间];
指		含义	将电流输入端口接收的电流值赋给 D 变量
Ŷ		示例	Set Ain[1],D1,T[5.1];
			Ain[电流输入端口号]:电流输入端口,Ain[0]~Ain[15]
		参数	D*** 其值为电流大小 (mA)
			T[时间]:延时时间,单位秒,范围T[0.000]~T[100.000]

	Set Vin	格式	Set Vin[电压输入端口],D***,T[时间];		
		含义	将电压输入端口接收的电压值赋给 D 变量		
		示例	Set Vin[1],D1,T[5.1]		
			Vin[电压输入端口]: 电压输入端口, Vin[0]~Vin[15]		
		参数	D*** 其值为电压值大小(V)		
信			T[时间]: 延时时间,单位秒,范围 T[0.000]~T[100.000]		
号	Wait	格式	Wait IN[输入端口号] == ON/OFF,T[时间];		
处		含义	等待输入信号符合条件		
理		示例	Wait IN[6] == ON,T[10];		
指令		参数	IN[输入端口号] == ON/OFF: 输入端口的判断条件, IN 范围 IN[0]~IN[255]		
			T[10]: 延时时间,单位秒,范围 T[0.000]~T[100.000]		
	Delay	格式	Delay T[时间];		
	,	含义	程序延时,时间由 T 参数控制		
		示例	Delay T[3.5];		
		参数	T[时间]: 延时时间,单位秒,范围 T[0.000]~T[100.000]		
	Msft	格式	PR*** = Msft (P[***],P[***]);		
		含义	计算两个位置变量间的运动,结果赋值给指定的平移变量		
		示例	PR0 = Msft(P[1],P[2]);		
		参数	对 LPR*** 依然适用		
	Pr***=	格式	平移变量 = (X,Y,Z,A,B,C);		
托		含义	平移变量赋值		
盘		示例	PR1 = (110,120,130,10,50,60);		
指		参数	平移变量:可取全局平移变量 PR 或局部平移变量 LPR		
Ŷ		罗奴	X,Y,Z 代表平移运动量, A,B,C 为旋转角度		
	Pr Sum	格式	PR*** = PR*** +/- PR***;		
		含义	两个平移变量进行加减运算求和,并赋值给另一个平移变量		
		示例	PR3 = PR2 – PR1;		
		参粉	等式左边:待赋值的平移变量		
		沙奴	等式右边:任意的 PR 变量间加减运算		

	P[***]	格式	位置变量 =(X,Y,Z,A,B,C),(ArmType[0], ArmType[1], ArmType[2],		
			ArmType[3]),(坐标系号, 工具号, 用户号);		
		含义	点位赋值		
		示例	P[3] = (10,50,30,40,50,60),(1,-1,1,0),(4,1,1);		
			(X,Y,Z,A,B,C): 空间位姿信息		
		参数	(ArmType[0], ArmType[1], ArmType[2], ArmType[3]): 机器人手臂姿势		
			参数,详细信息见编程手册。		
		LA D	(坐标系号, 上具号, 用尸号): 基准参数, 详细信息见编程于册		
	Pallet	格式	Pallet 托盐号, P[i], P[j], P[k], 行数, 列数, 层数, 层局;		
托盘指		含义	设定托盘上的点位,常用于码垛、搬运。具原埋是根据输入的二个点位 创建托盘边界,并根据行数、列数、层数、层高设定托盘模型,以后则 只需根据行、列、层的信息,便可指定托盘上的点位。		
		示例	Pallet 1,P[1],P[2],P[3],3,6,3,15;		
			托盘号:最多取到 255		
		参数	P[i],P[j],P[k]: 托盘定义点		
		少奴	行数,列数,层数,层高:托盘信息,指定该托盘的行数,列数,层数, 以及每层高度		
	P=Pallet	格式	P 变量 =Pallet(托盘号 , 行号 , 列号 , 层号);		
		含义	取托盘上的点位		
		示例	P 变量 =Pallet(1,2,3,1);		
		参数	(托盘号,行号,列号,层号):指定所选托盘号,该点位的在托盘中的, 行号,列号,层号		
	L	格式	L[标签号]:		
		含义	设置标签号		
	Goto	格式	Goto L[标签号];		
		含义	跳转到标签处		
	lf	格式	lf < 判断条件 >;		
流		含义	判断条件是否满足,若满足则执行后面语句,直到遇到 Else 或 Endlf		
程	Else	格式	Else		
指		含义	当 lf 的条件不满足时,跳转到该行,并执行后面语句,直到遇到 Endlf		
Ŷ	Endlf	格式	Endlf;		
		含义	lf 条件判断段落的终止语句,表示该 lf 段落结束		
	Switch	格式	Switch 变量		
		含义	条件选择语句的开头,选择一个 B/R/LB/LR 变量,供后数字文匹配		
	Case	格式	Case < 数字 >:		
		含义	用数字匹配 Switch 中的变量,若符合则运行后面语句,直到遇到 Break		

	Default	格式	Default:			
		含义	配合 Switch 语句使用, 先检测" Switch 变量" 与" Case < 数字 >" 的匹配, 若无匹配则执行 Default (默认) 的语句			
	EndSwitch	格式	EndSwitch;			
		含义	Switch 条件选择段落的终止语句			
	While	格式	While < 条件 >			
流程指令		含义	条件循环语句,若满足条件,则执行 While 与 EndWhile 之间的语句, 完成后再转入条件判断,往复循环,直到不满足条件时跳出。<条件 > 格式一般为"变量 操作符 变量或数字",如 LB1 <= 3;			
	EndWhile	格式	EndWhile;			
		含义	配合 While 使用,指定每次循环的执行内容			
	For	格式	For < 赋值表达式 >,< 条件表达式 >,Step[步长]			
		含义	先执行 < 赋值表达式 >, 再判断 < 条件表达式 >, 若满足条件则执行 For 与 EndFor 之间的内容,执行完成一次后,执行"Step[步长]",赋值 表达式中定义的变量自增,再判断 < 条件表达式 >, 若满足则继续刚才的 步骤,只至 < 条件表达式 > 不成立时跳出。赋值表达式指 B/R/LB/LR变 量的初始赋值,条件表达式指对应 B/R/LB/LR 变量的条件判断表达式, 步长指对应 B/R/LB/LR 变量每一次运行的增量			
	EndFor	格式	EndFor;			
		含义	配合 For 使用,指定每次循环的执行内容			
	Break	格式	Break;			
		含义	跳出语句。用于跳出循环,此外还用于在 Switch 语句中执行 Case 段后跳出			
	Continue	格式	Continue;			
		含义	跳出当前循环继续执行下一个循环			

B.2 基本运算符号含义说明

运算符号	说明
==	关系等于
>	关系大于
<	关系小于
>=	关系大于等于
<=	关系小于等于
<>	关系不等于
AND	逻辑与
OR	逻辑或
=	赋值运算符
+	加法运算符
-	减法运算符
*	乘法运算符
/	除法运算符
%	取余运算符
#	注释本行
;	分号,位于行末,代表一行语句的结束
:	冒号,用于提示下文,标签L指令、Switch-Case- Default等中有用到
,	逗号,起间隔作用
""	双引号,表明该内容为字符串

附录 C 版本变更记录

日期	变更后版本	变更内容
2015-09	V0.0	◆ 第一版发行。
2016-04	A01	◆ 表 2-3 RS485/CAN 接口 DB9 引脚定义更正。
2016-07	A02	◆ 细小更正。
2018-09	A03	◆ logo 更新。

服务与技术支持APP

深圳市汇川技术股份有限公司

Shenzhen Inovance Technology Co., Ltd. 地址: 深圳市宝安区宝城70区留仙二路鸿威工业区E栋 总机: (0755)2979 9595 传真: (0755)2961 9897 客服: 400-777-1260 http://www.inovance.com

苏州汇川技术有限公司

Suzhou Inovance Technology Co., Ltd. 地址: 苏州市吴中区越溪友翔路16号 总机: (0512)6637 6666 传真: (0512)6285 6720 客服: 400-777-1260 http://www.inovance.com

由于本公司持续的产品升级造成的内容变更,恕不另行通知 版权所有 © 深圳市汇川技术股份有限公司 Copyright © Shenzhen Inovance Technology Co., Ltd.